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Abstract Among the two-center integrals occurring in
the molecular context, the two-center overlap integrals
are numerous and difficult to evaluate to a level of high
accuracy. The analytical and numerical difficulties arise
mainly from the presence of the spherical Bessel inte-
grals in the analytic expressions of these molecular
integrals. Different approaches have been used to de-
velop efficient algorithms for the numerical evaluation of
the molecular integrals under consideration. These ap-
proaches are based on quadrature rules, Levin’s u
transform, or the epsilon-algorithm of Wynn. In the
present work, we use the nonlinear �D transformation of
Sidi. This transformation is shown to be highly efficient
in improving the convergence of highly oscillatory
integrals, and it has been applied to molecular multi-
center integrals, namely three-center attraction, hybrid,
two-, three-, and four-center two-electron Coulomb and
exchange integrals over B functions and over Slater-type
functions. It is also been shown that when evaluating
these molecular multicenter integrals the �D transforma-
tion is more efficient compared with the methods cited
above. It is now proven that the integrand occurring in
the analytic expression of the two-center overlap inte-
grals satisfies all the conditions required to apply the �D
transformation. A highly accurate algorithm based on
this transformation is now developed. Special cases are
presented and discussed for a better optimization of the
algorithm. The numerical results section illustrates
clearly the high efficiency of our algorithm.

Keywords Nonlinear transformations Æ Extrapolation
methods Æ Numerical integration Æ Molecular integrals Æ
Slater-type functions Æ B functions

Introduction

The numerical evaluation of two-center overlap integrals
over exponential-type functions is of great importance
for any accurate molecular structure calculations. Dif-
ferent approaches have been used for the analytical
development of these two-center integrals and for their
accurate numerical evaluation [1–20]. Note that multi-
center molecular integrals can be expressed in terms of
the two-center overlap integrals. Therefore, the accurate
and rapid numerical evaluation of these integrals be-
comes more important in quantum-mechanical calcula-
tions of the electronic structures of molecules.

A basis set of the so-called B functions [21, 22] is
used. These functions are analytically more complicated
than Slater-type functions (STFs) [23, 24], but they have
much more appealing properties applicable to multi-
center integral problems [2, 22, 25]. Note that STFs can
be expressed as finite linear combinations in terms of B
functions [8]. The most important advantage of using
these B functions is for the fact that their Fourier
transforms are exceptionally simple [1], and they are well
adapted to the Fourier transform method [10, 11, 26,
27].

In the present work, we used the analytic expressions
obtained by Weniger and Steinborn [1] for the molecular
integrals under consideration, using the Fourier trans-
form method. These analytical expressions turned out to
be extremely difficult to be evaluated accurately and
rapidly, due to the presence of semi-infinite highly
oscillatory integrals, involving spherical Bessel functions
jk(Rx).

Different approaches have been used for the numer-
ical evaluation of these spherical Bessel integrals.
Gauss–Laguerre quadrature is not efficient when the
values of R and k are large. Note that when these values
are large, the oscillation of the integrand becomes strong
(see Fig. 1). Therefore, the numerical evaluation of the
semi-infinite integrals presents severe numerical diffi-
culties. The semi-infinite oscillatory integrals can be

H. Safouhi (&)
Campus Saint-Jean, University of Alberta 8406, 91 Street,
Edmonton, Alberta, T6C 4G9, Canada
E-mail: hassan.safouhi@ualberta.ca

J Mol Model (2006) 12: 213–220
DOI 10.1007/s00894-005-0020-z



transformed into infinite series. These series are slowly
convergent and this is why their use is prohibitively long
for sufficient accuracy. The epsilon algorithm of Wynn
[28] or Levin’s u transform [29] accelerate the conver-
gence of infinite series, but in the case of the semi-infinite
integrals involved in the analytical expressions of over-
lap integrals, the calculation times for sufficient accuracy
are still long, especially for large values of R and k, since
the zeros of jk(Rx). become closer.

The nonlinear D [30] and �D [31, 32] transformations
have been shown to be highly efficient when evaluating
oscillatory integrals, whose integrands satisfy linear
differential equations with coefficients having asymptotic
expansions in inverse powers of their arguments x as
x!1: In previous work [33–40], we demonstrated that
the semi-infinite integrals occurring in the analytic
expressions of three- and four-center molecular elec-
tronic integrals satisfy all the conditions required to
apply the D and �D transformations. In this work, we
demonstrated that the semi-infinite Bessel integrals
occurring in the analytic expressions of two-center
overlap integrals over B functions also satisfy all the
conditions required to apply D and �D: This led to the
development of a highly accurate algorithm for the
numerical evaluation of the molecular integrals under
consideration.

The numerical results section contains tables with
values of the semi-infinite integrals in question. These
semi-infinite integrals were transformed into infinite
series. These infinite series were used to compute values
of these integrals with a certain number of correct digits.
Tables with values of the semi-infinite integrals obtained
using the �D transformation are listed. The values of the
complete expression of two-center overlap integrals ob-
tained using the algorithm described in this work are in
complete accordance with those obtained by Groten-
dorst et al. [3] and Weniger and Steinborn [2] (see
Table 1). The numerical results obtained using the

algorithm described in the present work are in complete
agreement with those obtained using the ACJU program
developed by Homeier et al. [41] (see Table 2).

Note that the algorithm presented in this work can
also be applied to the molecular integrals under con-
sideration over STFs, by expressing them in terms of
integrals over B functions (see Table 3). The numerical
results that we obtained using the algorithm described in
the present contribution are in an excellent agreement
with those obtained by Talman [13], Guseinov et al. [14,
15], and Guseinov and Mamedov [16].

General definitions and properties

The B functions are defined as follows [8, 22]:

Bm
n;lðf;~rÞ ¼

ðfrÞl

2nþlðnþ lÞ! k̂n�1
2
ðfrÞY m

l ðh~r;u~rÞ ð1Þ

where n,l and m are the quantum numbers and
Y m

l ðhr;urÞ stands for the surface spherical harmonic [42]

Y m
l ðh;uÞ ¼ imþ mj j ð2lþ 1Þðl� mj jÞ!

4pðlþ mj jÞ!

� �1
2

P mj j
l ðcos hÞeimu

ð2Þ

P m
l ðzÞ is the associated Legendre polynomial [43].
The function k̂nþð1=2ÞðfrÞ stands for the reduced Bessel

function [21, 22]. The reduced Bessel functions satisfy
the following relations [21, 43]

k̂nþ1
2
ðzÞ ¼ ð2n� 1Þk̂n�1

2
ðzÞ þ z2k̂ðn�1Þþ1

2
ðzÞ ð3Þ

The Fourier transform of a B function is given by [1]

�Bm
n;lðf;~PÞ ¼

ffiffiffi
2

p

r
f2nþl�1 ð�i pj jÞl

ðf2 þ pj j2Þnþlþ1 Y m
l ðh~p;u~pÞ ð4Þ
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Fig. 1 The integrand Fx) of the
semi-infinite integral (16);
nx=5, k1=2, k2=2, nx=5,
k=5, n 1=0.25, n 2=0.3, and
v=75.0
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Table 1 Evaluation of two-center overlap integrals given by Eq. (13); n 1=1.5 and ~R ¼ ð10:0; 40�; 0�Þ

N1 l1 m1 n2 l2 M2 n2 Values �a Values �Db

1 0 0 1 0 0 2.2 0.241222730889(�2) 0.241222730889(�2)
1 0 0 1 0 0 5.5 0.155947042412(�3) 0.155947042412(�3)
1 0 0 1 0 0 9.9 0.260333516751(�4) 0.260333516752(�4)
3 1 1 1 1 0 2.2 0.113546037054(�3) 0.113546037054(�3)
3 1 1 1 1 0 5.5 0.656024309138(�5) 0.656024309178(�5)
1 1 0 3 1 1 2.2 0.191855872152(�3) 0.191855872152(�3)
1 1 0 3 1 1 5.5 0.229394206519(�4) 0.229394207154(�4)
5 0 0 5 0 0 2.2 0.883967476163(�3) 0.883967476163(�3)
5 0 0 5 0 0 5.5 0.839121793485(�4) 0.839121794539(�4)
5 5 5 1 0 0 2 �0.508703856143(�7) �0.508703856032(�7)
4 4 4 3 3 3 2 �0.156368843565(�5) �0.156368843560(�5)
3 3 3 4 4 4 2 0.167067525483(�5) 0.167067525481(�5)
1 0 0 5 5 5 2 0.131799235096(�6) 0.131799234943(�6)
a Values � were obtained using the infinite series given by Eq. 17. These values are computed with 15 correct digits.
b Values �D were obtained using the nonlinear �D transformation of order n (41).These values are in complete accordance with those listed in
Table 3 in Ref. [2] and in Table 3 in Ref. [3].

Table 2 Evaluation of two-center overlap integrals given by Eq. 13;n2=n1, n 1=1.5, n 2=1.0 and ~R ¼ ð10:0; 40�; 0�Þ

n1 l1 m1 l2 m2 Values �a Values �Db Values �c

1 0 0 0 0 0.149634124134(�04) 0.149634124086(�4) 0.149634251158(�4)
2 1 0 1 0 �0.429351058233(�04) �0.429351058233(�4) �0.429350754943(�4)
2 1 1 1 1 �0.738355546788(�05) �0.738355546777(�5) �0.738358522963(�5)
3 2 1 1 1 �0.573632030119(�05) �0.573632030122(�5) �0.573634375218(�5)
3 2 2 2 2 �0.256606777006(�05) �0.256606777007(�5) �0.256607268877(�5)
4 3 2 2 1 0.166443014555(�05) 0.166443014553(�5) 0.166442517055(�5)
4 3 3 2 2 �0.151260133537(�06) �0.151260133540(�6) �0.151258163223(�6)
4 3 3 3 2 0.162220578863(�06) 0.162220578877(�6) 0.162218711653(�6)
5 2 1 3 2 �0.181938285907(�05) �0.181938285910(�5) �0.181937858166(�5)
5 3 3 3 3 �0.330662288558(�06) �0.330662288559(�6) �0.330662733751(�6)
a Values � were obtained using the infinite series given by Eq. 17. These values are computed with 15 correct digits.
b Values �D were obtained using the nonlinear �D transformation of order n (41).
c Values � were obtained using the ACJU program developed by Homeier et al. [41].

Table 3 Evaluation of two-center overlap integrals over STFs given by Eq. 15; h=/ = 0�

n1 L1 m1 n1 n2 l2 m2 n2 R Values �D Values [13–16]

5 4 0 1 5 4 0 1 1 0.768617011(0) 0.768617016(0)
5 4 4 1 5 4 4 1 1 0.955778746(0) 0.955778746(0)
5 4 0 5 5 4 0 1 1 0.900262308(�2) 0.900262309(�2)
5 4 4 5 5 4 4 1 1 0.318003745(�1) 0.318003745(�1)
5 4 0 5 5 4 0 5 1 �0.138257012 �0.138257012
5 4 4 5 5 4 4 5 1 0.356825987(0) 0.356825987(0)
8 0 0 1 8 0 0 1 1 0.989015�721(0) 0.989015721(0)
8 0 0 5 8 0 0 1 1 0.107437341(�1) 0.107437341(�1)
8 0 0 5 8 0 0 5 1 0.785230850(0) 0.785230850(0)
4 3 0 1.9 6 5 0 0.1 100 �0.534413558(�5) �0.534413558(�5)
6 3 2 1.4 8 5 2 0.6 40 �0.321391598(�4) �0.321391598(�4)
12 7 3 1.3 12 7 3 0.7 15 0.229354179(�1) 0.229354178(�1)
17 8 4 1.8 14 6 4 0.2 30 0.913913987(�6) 0.913905849(�6)
10 7 1 2.5 8 1 1 10 2.5 0.152138456(�1) 0.152138456(�1)
18 12 6 1.5 18 12 6 30 1.5 0.948615868(�2) 0.948615878(�2)
21 10 5 6 9 6 5 10 6 �0.293153644(�7) �0.293153644(�7)
30 10 8 1.5 14 8 8 10 1.5 0.122364599(0) �0.122376276(0)
3 2 1 8 3 2 1 2 5 �0.442287767(�3) �0.442287766(�3)
9 5 3 6 8 4 3 4 9 �0.546608468(�7) �0.546510243(�7)
10 7 1 14.4 8 2 1 9.6 5 �0.184096844(�9) �0.184189026(�9)
10 9 9 4.8 10 9 9 1.2 5 0.623122318(�3) 0.623122318(�3)
17 8 4 11 8 7 4 9 5 �0.100636030(�5) �0.100623367(�5)
21 10 6 9 9 8 6 9 5 0.538979476(�4) 0.538980685(�4)
30 10 8 7 14 10 8 7 5 0.135074705(�1) 0.135074709(�1)
40 4 3 4.8 12 4 3 1.2 5 0.948246700(�1) 0.948379265(�1)
43 10 6 7.2 18 8 6 16.8 5 �0.115808750(�3) �0.115907687(�3)
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The spherical Bessel function is defined by [43]

jkðxÞ ¼ ð�1Þkxk d

xdx

� �k
sinðxÞ

x

� �
ð5Þ

The spherical Bessel function satisfies the following
recurrence relations [43]:

xjl�1ðxÞ þ xjlþ1ðxÞ = (2l + 1)jl (x)

ljl�1ðxÞ � ðlþ 1Þjlþ1ðxÞ = (2l + 1)jl’ (x)

xjl�1ðxÞ � ðlþ 1ÞjlðxÞ =xj’l(x)

8>><
>>:

: ð6Þ

For the following, we use jn
kþð1=2Þ with n=1,2,3, ... for

the successive positive zeros jk (x). jk+(1/2)
0 are assumed

to be 0.
The STFs are defined in normalized form according

to the following relationship [23, 24]:

vm
n;lðf;~rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2fÞ2nþ1

ð2nÞ! rn�1e�fr

s
Y m

l ðh~r;u~rÞ ð7Þ

STFs can be expressed as finite linear combinations of B
functions [8]:

vm
n;lðf;~rÞ ¼

1

fn�1

Xn�1
p¼~p

ð�1Þn�l�p22pþ2l�nðlþ pÞ!
ð2p � nþ lÞ!ðn� l� pÞ! Bm

p;lðf; r~Þ

ð8Þ

where

~p ¼
n�l
2 if n - 1 is even

n�lþ1
2 if n - 1 is odd

�
ð9Þ

we defined A(c) for certain c as the set of infinitely dif-
ferentiable functions px), which have asymptotic
expansions in inverse powers of x as x fi ¥, of the
form

pðxÞ � xcða0 þ
a1
x
þ a2

x2
þ . . .Þ ð10Þ

Gaunt coefficients are defined by [44–47]

l1;m1 l2;m2j jl3;m3

� �
¼
Zp

0

Z2p

0

Y m1

l1
ðh;uÞ

h i

� Y m2

l2
ðh;uÞY m3

l3
ðh;uÞ sinðhÞdhdu

ð11Þ

Two-center overlap integrals over B functions are
defined by

Sn2l2m2

n1l1m1
¼
Z
~r

Bm1

n1l1
ðf1;~rÞ

h i
� Bm2

n2;l2
f2;~r �~R
	 


d~r ð12Þ

By using the Fourier transform method, one can obtain
analytical expressions for the two-center overlap and
Coulomb integrals over B functions. These analytical
expressions are given by [1]

Sn2l2m2

n1l1m1
¼ 8ð�1Þl2 il1þl2f2n1þl1�1

1 f2n2þl2�1
2

�
Xl1þl2

k¼kmin;2

ð�iÞk
�
l2m2jl1m1jkm2�m1

�
Y m2�m1

k ðh~v;u~vÞ

�
Z þ1
0

xnx

f21þ x2
	 
k1 f22þ x2

	 
k2
jkðRxÞdx ð13Þ

where

R ¼ jjR!jj themodulus of~R
k1 ¼ n1 þ l1 þ 1
k2 ¼ n2 þ l2 þ 1
nx ¼ l1 þ l2 þ 2

8>><
>>:

ð14Þ

By using Eq. 8, one can easily express two-center
overlap integrals over STFs in terms of two-center
overlap integrals over B functions. If we let ~Sn2l2m2

n1l1m1
be the

two-center overlap integrals over STFs, then we obtain

Sn2l2m2

n1l1m1
¼
Xn1�l1

p1¼~p1

ð�1Þn1�l1�p122p1þ2l1�n1ðl1 þ p1Þ!
ð2p1 � n1 þ l1Þ!ðn1 � l1 � p1Þ!

�
Xn2�l2

p2¼~p2

ð�1Þn2�l2�p222p2þ2l1�n1ðl1 þ p1Þ!
ð2p1 � n1 þ l1Þ!ðn1 � l1 � p1Þ!

Sp2;l2;m2
p1;l1;m1

ð15Þ

where Sp2l2m2

p1l1m1
is given by Eq. 12.

The nonlinear �D transformation and the development
of the algorithm

The numerical evaluation of the analytical expression
(13) turned out to be extremely difficult due to the
presence of the semi-infinite integrals. The integrands of
these semi-infinite integrals are highly oscillatory be-
cause of the presence of the spherical Bessel functions, in
particular for large values of k. Note that when the value
of R is large, the zeros of the integrands become closer
and consequently the oscillations become sharp. In this
situation, the evaluation of the semi-infinite integrals
presents severe computational and numerical difficulties.

Let us consider the semi-infinite integrals occurring in
Eq. 13, which is given by

I ¼
Zþ1

0

xnx

f21 þ x2
	 
k1 f22 þ x2

	 
k2
jkðRxÞ dx ð16Þ

I ¼
Xþ1
n¼0

Z jnþ1
X ;R

jn
X ;R

xnx

f21 þ x2
	 
k1 f22 þ x2

	 
k2
jkðRxÞ dx ð17Þ

where j0k;R ¼ 0 and for n=1,2,3, ... jn
k;R are the leading

positive zeros jk (Rx), and they are given by

jn
k;R ¼

jn
kþð1=2Þ

R
ð18Þ

where jn
kþð1=2Þ for n=1,2,3, ... are the successive positive

zeros jk (x).
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As it can be seen from Table 4, one needs to sum a
large number of terms of the infinite series to obtain an
accurate evaluation of the semi-infinite integral (16).
This slow-convergence problem prevented the use of the
infinite series (17) for the numerical evaluation of over-
lap integrals.

By using the fact that the integrand F(x) converges to
0 when x fi ¥ and if k „ 0 then

lim
a!0

jkðaÞ ¼ 1

one can easily show that when R fi 0 and k „ 0 the
semi-infinite integral (16) vanishes.

In the case where k=0 and R fi 0, we replaced jk
(Rx) by its Taylor development and obtained the fol-
lowing equation:

I �
Zþ1

0

xnx

ðf21 þ x2Þk1ðf22 þ x2Þk2
1� R2x2

3!
þ R4x4

5!
� � � �

� �
dx

ð19Þ

Note that in the case where f 1=f 2, Weniger and
Steinborn [1] developed an expression of the semi-infi-
nite integral (16), which is given by

I ¼ ð�1ÞDt p

2n1þn2þl1þl2þ2f2n1þ2n2þl1þl2þ1

�
XDt

n¼0

ð�2Það
i
Þ f1 vð Þl

ðn1 þ n2 þ l1 þ l2 � aþ 1Þ!k̂v f1 Rð Þ
ð20Þ

Dl ¼ ðl1 þ l2 � kÞ=2
v ¼ n1 þ n2 þ l1 þ l2 � k� aþ 1

2

�
ð21Þ

In the case where the scaling parameters f 1 and f 2

are not equal, Weniger and Steinborn [1] developed an
expression of the semi-infinite integral (16) in terms of
reduced Bessel functions, from which one can obtain, as
explained in Ref. [1], the well-known representation of
overlap integrals in terms of Jacobi polynomials [8].

In the present work, we present an approach based
on nonlinear transformations for a highly accurate
numerical evaluation of the semi-infinite integrals of the
form given above.

Theorem 1 [30] Let f(x) be integrable on [0,¥] and
satisfy a linear differential equation of order m of the
form

f ðxÞ ¼
Xm

k¼1
pkðxÞf ðkÞðxÞ; with pk 2 AðikÞ; ik � k ð22Þ

If for all k=i,i+1, ..., m ; i=1,2,3, ..., m

lim
x!þ1

pði�1Þk ðxÞf ðk�iÞðxÞ ¼ 0 ð23Þ

and for all l ‡ 1

Xm

k¼1
lðl� 1Þ � � � ðl� k þ 1Þpk;0 6¼ 1 ð24Þ

where

pk;0 ¼ lim
x!þ1

x�kpkðxÞ; 1 � k � m ð25Þ

then as x fi ¥

Zþ1

x

f ðtÞ dt �
Xm�1
k¼0

f ðkÞðxÞxjk b0;k þ
b1;k

x
þ

b2;k

x2
þ � � �

� �

ð26Þ

where

jk � maxðikþ1; ikþ2 � 1; . . . ; im � mþ k þ 1Þ;
k ¼ 0; 1; . . . ;m� 1

The approximation �DðmÞn of
Rþ1
0 f ðxÞdx; using the

nonlinear �D transformation, satisfies the n(m � 1)+1
equations given by [31]

Table 4 Evaluation of the semi-infinite integral (16);n 1=0.25 and n 2=0.3

nx M1 m2 k R nmax Values�a n Values �Db

3 1 2 2 5 4,759 0.4724113899(0) 5 0.4724113900(0)
3 1 2 3 5 4,758 0.2465110056(0) 5 0.2465110055(0)
5 1 3 3 5 4,758 0.1938959416(0) 5 0.1938959415(0)
5 1 3 4 5 4,758 0.1111094118(0) 5 0.1111094118(0)
7 1 4 5 5 4,757 0.5867845838(�1) 5 0.5867845838(�1)
3 1 2 2 25 10,642 0.5259869539(�1) 8 0.5259869544(�1)
3 1 2 3 25 10,642 0.8348898819(�1) 8 0.8348898821(�1)
5 1 3 3 25 10,642 0.1566408549(�1) 6 0.1566408553(�1)
5 1 3 4 25 10,641 0.2948688697(�1) 8 0.2948688698(�1)
7 1 4 5 25 10,641 0.1501930094(�1) 7 0.1501930089(�1)
3 2 1 2 55 15,786 0.2783143897(�2) 8 0.2783143956(�2)
3 2 1 3 55 15,785 0.7294018766(�2) 9 0.7294018727(�2)
5 2 2 5 55 15,784 0.1631535222(�2) 8 0.1631535283(�2)
7 3 2 7 55 15,783 0.1038418325(�2) 7 0.1038418377(�2)
9 3 3 8 55 15,783 0.3201457351(�3) 8 0.3201457519(�3)
a Values � were obtained using the infinite series given by Eq. 17. These values are computed with 15 correct digits.
b Values �D were obtained using the nonlinear �D transformation of order n(41).
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�DðmÞn ¼
Zxl

0

f ðtÞdt

þ
Xm�1
h¼1

f ðkÞðxlÞxkþ1
l

Xn�1
i¼0

�bk;i

xi
l
; l ¼ 0; 1; . . . ; nm ð27Þ

where �DðmÞn and �bk;i are the unknowns of the above system.
The xl for l=0,1,2, ... are the leading positive zeros of f(x).

Now let us consider the integrand F(x) of the semi-
infinite integral (17)

F ðxÞ ¼ gðxÞjkðRxÞ ð28Þ

where the function g(x) is given by

gðxÞ ¼ xnx

ðf21 þ x2Þk1ðf22 þ x2Þk2
ð29Þ

The spherical Bessel function satisfies a second-order
linear differential equation given by [43]

jkðBxÞ ¼ � 2x

ðRxÞ2 � k2 � k
j 0kðRxÞ

� x2

ðRxÞ2 � k2 � k
j 00kðRxÞ

¼ q1ðxÞj 00kðRxÞ þ q2ðxÞj 00kðRxÞ ð30Þ

Note that the coefficients q1 (x) and q2 (x) of the linear
differential equation (30)are, respectively, inA(- 1)andA(0).

Corollary [30] If the function f is integrable on [0,+¥
[ and satisfies a linear mth order differential equation of
the form

f ðxÞ ¼
Xm

k¼1
pkðxÞf ðkÞðxÞ ð31Þ

where pk are in A(k) for k=1,2, ..., m and g 2A(c), then
fg satisfies a linear differential equation of order m or
less with coefficients that have asymptotic expansions in
inverse powers of x.

From Eq. 29, one can easily show that
g 2 Aðnxþ2ðk1þk2ÞÞ: From this and the corollary it follows
that g(x)jk (vx) satisfies a linear differential equation of
order 2 or less with coefficients that have asymptotic
expansions in inverse powers of x. This differential
equation can be obtained explicitly by jk (vx) by F(x)/
g(x) in Eq. 30:

F ðxÞ ¼ p1ðxÞF 0ðxÞ þ p2ðxÞF 00ðxÞ ð32Þ

where

p1ðxÞ¼
gðxÞq1ðxÞ�2q2ðxÞg0ðxÞ

gðxÞHðxÞ and p2ðxÞ¼
q2ðxÞ
HðxÞ ð33Þ

and where H(x) is given by

HðxÞ¼ 1þq2ðxÞg0ðxÞ
gðxÞ �2q2ðxÞðg0ðxÞÞ2

g2ðxÞ þq2ðxÞg00ðxÞ
gðxÞ ð34Þ

The above second-order linear differential equation was
obtained by Sidi for a function F(x)=g(x)Jk (x) [31].

Using the properties of asymptotic expansions in in-
verse powers of x, one can easily show that H(x) 2A(0).
From this it follows that

p1ðxÞ 2 Að�1Þ and p2ðxÞ 2 Að0Þ ð35Þ

Using the analytic expression of F(x) with the fact
that nx £ 2(k1+k2) and with the help of Eq. 35, one can
easily show that for all k=i,2; i=1,2:

lim
x!þ1

pði�1Þ1 ðxÞf ðk�iÞðxÞ ¼ 0

lim
x!þ1

pði�1Þ2 ðxÞf ðk�iÞðxÞ ¼ 0

8<
: ð36Þ

and for all l ‡ 1

X2
k¼1

lðl� 1Þ � � �ðl� k þ 1Þpk;0 ¼ 0 6¼ 1 ð37Þ

It is now shown that all conditions of Theorem 1 are
satisfied by the integrand Fx). From this it follows thatRþ1

x f ðtÞdt has an asymptotic expansion in inverse pow-
ers of x of the form given by Eq. 26 when x fi ¥. The
approximation of using the nonlinear �D transformation
can be obtained by solving the following linear system:

�Dð2Þn ¼
Zxl

0

f ðtÞdt þ x2l gðxlÞj0lðRxlÞ
Xn�1
i¼0

�b1;i

xi
l
; l ¼ 0; 1; . . . ; n

ð38Þ

where xl are the leading positive zeros of jk (Rx).
Note that if xl is a zero of jk (Rx) then from Eq. 6 it

follows

j 0kðRx1Þ ¼
k
x1

jkðRx1Þ � Rjkþ1ðRx1Þ ¼ �RjkþðRx1Þ
¼ �Rjkþ1ðRx1Þ ð39Þ

j 0kðRxlÞ ¼ Rjk�1ðRxlÞ �
kþ 1

x1
jkðRxlÞ ¼ Rjk�1ðRxlÞ ð40Þ

From the above equations, it follows that one does
not have to compute the first derivative of the spherical
Bessel function for calculating the approximation �Dð2Þn :
Note that the use of Eq. 40 is faster than the use of
Eq. 39, and in this case we obtain for k ‡ 1:

�Dð2Þn ¼
Zxl

0

f ðtÞ dt þ x2l gðxlÞjk�1ðRxlÞ

Xn�1
i¼0

�b1;i

xi
l
; l ¼ 0; 1; . . . ; n

ð41Þ

and for k=1, we use Cramer’s rule [31] for calculating
the approximation �Dð2Þn ; since the zeros of j0 (Rx) are
equidistant. In this case, the expression of �Dð2Þn is given by
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D
ð2Þ
n ¼

Pnþ1
i¼0

nþ 1
i

� �
ð1þ iÞnAðxiÞ=½x2i gðxiÞ	

Pnþ1
i¼0

nþ 1
i

� �
ð1þ iÞn=½x2i gðxiÞ	

ð42Þ

where AðxÞ ¼
R x
0 F ðtÞdt:

The convergence properties of the nonlinear �D
transformation were analyzed by Sidi [31], who showed
that the approximation �Dð2Þn converges to the exact val-
ues of the semi-infinite integrals.

Numerical results and discussion

In Table. 4 and 5, we listed values of the semi-infinite
integral (16), which are obtained using the infinite series
(17) for R=5.0, 25.0, and 50.0 These values which are
referred to as values ‘‘�’’, were obtained by performing
the following test: If:

Zjnþ1
k;R

jn
k;R

xnx

ðf21 þ x2Þk1ðf22 þ x2Þk2
jkðRxÞdx > e ð43Þ

then nmax=n and the value IS of the semi-infinite inte-
gral is given by

IS ¼
Xnmax�1

n¼0

Zjnþ1
k;R

jn
k;R

xnx

ðf21 þ x2Þk1ðf22 þ x2Þk2
jkðRxÞ dx ð44Þ

The value of � was set to10�15.
Each term of the finite sum (44) is computed using the

Gauss–Legendre quadrature of order 96.
As can be seen from Table 4, the infinite series is

slowly convergent, especially when the value of R is
large. The value of nmax increases considerably when the
value of R gets larger, and the oscillations of the inte-
grand become stronger due to the fact that the zeros of
the integrand become closer.

The linear system (38) is solved using the LU
decomposition method. The finite integrals,
AðxÞ ¼

R xl

0 F ðtÞdt; occurring in Eqs. 38 and 42 are
transformed into a finite sum as follows:

A ¼
Zxl

0

F ðtÞ dt ¼
Xl�1
i¼0

Z xiþ1

xi

F ðtÞ dt ð45Þ

and each term of the above finite sum is evaluated using
Gauss–Legendre quadrature of order 48.

In Table 5, values ‘‘�’’ are obtained using the analytic
expression (20) developed by Weniger and Steinborn [1]
in the case where the scaling parameters are equal.

In Table. 4 and 5, values �D are obtained using the
nonlinear �D transformation of order n (38).

Table. 1 and 2 contain values of the two-center
overlap integrals over B functions. In these tables, values
‘‘�’’ are obtained using the infinite series and values �D
are obtained using the �D transformation of order n=10,
to evaluate the semi-infinite integrals occurring in the
analytic expressions of the molecular integrals under
consideration.

In Table 2, values ‘‘�’’ are obtained using the ACJU
program developed by Homeier et al. [41]. As can be
seen from this table, our numerical results are in com-
plete accordance with those obtained using the ACJU
program.

Table 1 contains values of overlap integrals over B
functions, which are in complete accordance with values
obtained by Weniger and Steinborn [2] and Grotendorst
et al. [3].

Table 3 contains values of two-center overlap inte-
grals over STFs. These overlap integrals over STFs were
expressed in terms of overlap over B functions. Values
obtained using the algorithm described in the present
work are in excellent agreement with those obtained by
Talman [13], Guseinov et al. [14, 15], and Guseinov and
Mamedov [16].

For the numerical evaluation of Gaunt coefficients,
which occur in the complete analytical expressions of
two-center overlap integrals, we used the subroutine
GAUNT.F developed by Weniger and Steinborn [47].

Table 5 Evaluation of the semi-infinite integral (16); n2=n1, l2=l1, nx=5, n 1=n 2=1.0, and R=10.0

n1 l1 k nmax Valuesa N Values �Db Values �c

1 1 0 96 �0.1486637795(�3) 12 �0.148663779(�3) �0.1486637795(�3)
1 1 2 95 0.2469991590(�3) 11 0.2469991590(�3) 0.2469991590(�3)
2 2 2 23 0.1098778914(�4) 8 0.1098778914(�4) 0.1098778914(�4)
2 2 4 22 0.9847230030(�4) 8 0.9847230030(�4) 0.9847230030(�4)
3 2 4 14 0.6147295734(�4) 7 0.6147295734(�4) 0.6147295734(�4)
3 3 4 11 0.1050100332(�4) 6 0.1050100332(�4) 0.1050100332(�4)
4 3 6 7 0.4476757274(�5) 4 0.4476757274(�5) 0.4476757274(�5)
4 4 6 6 0.9414467934(�6) 4 0.9414467934(�6) 0.9414467933(�6)
a Values were obtained using the infinite series given by Eq. 17. These values are computed with 15 correct digits.
b Values �D were obtained using the nonlinear �D transformation of order n (41).
c Values � were obtained using the analytic expression given by Eq. 20.
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The spherical harmonics are computed using the recur-
rence formulae given in Ref. [47].

From the numerical tables, one can notice that the
nonlinear �D is able to reach high accuracy in the
numerical evaluation of the molecular integrals under
consideration.

In all tables, the numbers in parentheses represent
powers of 10 and all entries are in atomic units.

Conclusion

Analytic expressions for the two-center overlap integrals
over the so-called B functions are obtained with the help
of the Fourier transform method. These analytic
expressions turned out to be very difficult to evaluate
because of the presence of highly semi-infinite integrals
involving spherical Bessel functions and not a simple
trigonometric function.

It was shown that these semi-infinite integrals are
suitable to apply �D; which consists of transforming the
semi-infinite integrals involving Bessel functions into
asymptotic expansions in inverse powers of x as x fi
¥. These asymptotic expansions are transformed into
sets of linear equations. The approximations of semi-
infinite integrals are obtained by solving these linear
systems and it is shown that the approximations ob-
tained using the �D transformation converge to the exact
values of the semi-infinite integrals.

The algorithm developed in the present work is now
shown to be very efficient. The numerical results show
that the approach described in this work yields values
for these integrals to a high predetermined accuracy.
This algorithm can be optimized and will definitely lead
to a fast numerical evaluation of the molecular integrals
under consideration.

Numerical results are obtained for the complete
expressions of two-center overlap and Coulomb inte-
grals over B functions. All are precise and very rapid.
These results confirm that this �D transformation repre-
sents another most significant advance on the road to
routine, precise and rapid evaluation of these molecular
electronic integrals.
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